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l. INTRODUCTION AND PRELIMINARIES

The problem of finding projections of minimal norm from C[0, 1] onto the
ith degree polynomial subspace #,[0, 1] has been investigated by numerous
authors, most notably Cheney, Morris. and Price (see, for example [2, 3. 4, 6.
7, 8]). The complcte solution to this problem, cven in the quadratic case
n = 2, 1s unknown. It can be shown (see [1]), however, that among the
minimal projections there is a symmetric projection Pg, satisfying
P f(HI(x) — Ps[f(1 =91 - x), forall xe [0, 1], fe ClO. 1].

In this paper we investigate a subclass of these projections. called
generalized interpolating projections (introduced in [4: Lemma 9]), and
determine explicitly the minimal symmetric generalized interpolating projec-
tion in the quadratic case n - 2. Two representations for the minimum norm
are provided below, and computational procedures based on each are
illustrated for the quadratic case. Most of the theory in Sections | and 2
generalizes to arbitrary Haar subspaces of C[0. 1].

Bounded projections from CI0, 1] onto .#,[0, 1] can be represented in the
form

P Z L,
P |
where ¥, ,..., £, are independent bounded linear functionals on C[0, 1], and

Py veeey U € 2,10, 1] are determined from %, == 5,; (Kronecker delta), i.e.,
the %, and the v; form a biorthogonal system.

DEFINITION. A4 generalized interpolating projection from C[0, 1] onto
#,]0, 1] is a projection which has at least one representation P = 3/ , &,
v; in which the linear functionals %, ...., £, have disjoint supports.

Notation. In the sequel, generalized interpolating projection will be abbre-
viated to gi projection or gip.
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MINIMAL PROJECTIONS 303

The terminology gi projection is based on the interpolation property:

Given arbitrary constants | ¢; | <7 % (i = 0,..., n), there exists an
feCl0, 1,1 fil, = 1, which interpolates ¢; at £ (£, f == ¢,) for i = 0,.... 1.

Then one also has that Pf -3, (Lf) v, — X1, cvs is an element of
-/, , in the range of the unit ball of C[0, 1], which interpolates the values ¢, at
the ¢, . An immediate example of gi projections is given by the interpolating
projections, i.e., those projections generated by taking ¥, =¢, . point
evaluation at x;, for i = 0,..., n.

Note. The projection P = 3, , % ¢ r; is invariant under an invertible
linear transformation of the (» -- I)-tuple & ~ (¥, ,..., ), since, for T a
nonsingular (# = 1) > (# -}- 1) matrix, one has

P =l - (LT T, 0 = (L 1),

where 77 denotes transpose. Thus P~ & (< ¢ is a gi projection if and only
if there is an invertible transformation 7 such that the elements of ¥#'7 are
“disjoint’ linear functionals.

From Cheney and Price [4; Lemma 9], one has the following fact.

PROPOSITION |, If P -= S % % v, is a gi projection, normalized (without
loss) so that all " F;' = 1. then

hpl e ‘it,[

i 0

A second representation for the norm of a gi projection is given in the
following statement, which is a simple consequence of Proposition 1.

PrOPOSITION 2. If P — 3.\ % & v, is a g projection, normalized (without
loss) so that all ', ;| = 1, then

CPLossuplp, it

where the supremum Is taken over all p, e #, such that  ¥.p, — 1(i =
0.....n).

2. CHARACTERIZATIONS FOR THE INFIMUM OF THE NORMS
OF GENERALIZED INTERPOLATION PROJECTIONS

In the previous section two characterizations were given for the norm of a
gi projection. These will now be used to develop computationally useful
characterizations for the infimum of the norms of gi projections (Theorems 2
and 3). A major additional tool in this development is the following known
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“quadrature-formula™ type result (see, e.g.. [S]). A short prool is given for
the benefit of the reader.

THEOREM 1. Ler L e2, %[0.1] with ' & Looand suppose Y Js
norm | extension of ¢ to C*[0. 1].
() If & is signed, then & is supported on no more than n | points
(exactlv - | points implies the points are the Tchebycheff points on [0, 1)).
(by I & is positive. then £ can be replaced by another norm 1 extension
of L which is positive and supported on no more than [(n - 2)/2] points.

Proof.  (a) Suppose .2 1s signed and has no fewer than # 1 points in

its support. Then " & ' - | implies that % achieves its norm at
some p -7, . where p o, I. But then ¢ must have all its mass concen-
trated at the points X, where - p(.x;) 1. Since there are at least » | such

points. p must be the nth degree Tchebychefl polynomial, and ¥ has exactly
the n - | ~“Tchebycheff points™ as its support.

(by  Suppose ¥ is positive and supported on more than » points. Then
¥ gives rise to a positive measure p on C[0, 1], and induces an inner product
(f.g) ﬂ,_/g du on ClO, 1]. Let + ~ [(n - 2)/2]. Let x, (i 1. ) be the
roots ol ¢, . where ¢ ..... ¢, are the orthogonal polynomials obtained irom
[, x.....x" by the Gram -Schmidt orthogonalization process (with respect 10
the inner product (). Then the theory of orthogonal polynomials provides
that there exist positive numbers ¢, (0 1., rysuch that #p S0 plx;)
for all p= .7, . Taking * 3! ,ae. .one has (i) ¥ 2 on .7, : and
an v S, 11

Note. In the case of Theorem I(a). ¢ a signed functional, it ¥ is sup-
ported on n points, then at least one of the endpoints must be included in the
support ol #. This follows upon noting that an nth degree polynomial of
norm | on [0, 1] has at most n I extrema in the open interval (0, 1).

To distinguish the functionals described in Theorem I, the terminology
simultancoush realizable will be used.

Derinpiion. A linear functional ¥« C~{0. 1] is simultaneously realizable
(sr) 1f it achieves its C*[0, I] norm on the subspace :#,[0, 1]. Further, if
v 1. & will be said to be normalized sr (nsr).

Exampre.  Consider the quadratic case n 2. Theorem I(a) then yields a
complete characterization of signed nsr functionals. In fact, such a signed
functional must have one of the forms

(1 [Ae, — (1 = Aye,l P U O (IR B
(it} [Ae; = (1 - A)e,] 0y d 0 A0 L
(1it) Sl el el 0O-Lv. X v L
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In case (i), the quadratic with value ! at 0 and minimum value — 1 at .\ yields
- 2 (noting that } = x - 1 is required to yield a quadratic of norm 1).
Case (i) is analogous. In case (iii), the quadratic with values ! at 0 and 1. and
value -1 at}yields -] ¥ 1.

Also in the case # -~ 2, Theorem I(b) states that #* - Ac, + (I Ny e
forsome 0 -~ x < v LO=T AL

The following two theorems provide distinct characterizations for the
infimum of the norms of gi projections. Each of these characterizations leads
1o a different numerical procedure for determining this infimum, as exempli-
fied in Section 3, where the quadratic case » - 2 is discussed.

"

Tueorem 2. inf | PEP — mf b Y, it ., where the second infimunm
ranges over all vy ..., r, ¢ 2,10, 1] adjusted so that the dual basis functionals
L S 250, 1] (ie., Lo, == 8,)) have norm 1.

Proof.  Given such ¢, ..... v, € #,[0, 1], it will be shown that 1 3/, ©
is the limit of norms of gi projections. According to Theorem 1, extend each
Pito &= X gae,, , where 1 = 7, 1a; = 1. If there is overlap

of support, let x/; = x,; | €, so that the supports of %' — 3 a,»,e,.t]_ are
disjoint and in [0, 1]. Consider g,...., ¢, €.2,[0, 1], where %'v,/ &
Then P 3, ,% v/ is a generalized interpolating projection. By
Proposition 1.1, # P | ="'3" /v, ', . which approaches 'Y, &
as e, - >0(0 i, j L),

On the other hand. if P~ ¥ (¥, ¢, where the ¥, have disjoint
supports (+ " - 1), then | Pl — 1% "¢, |, by Proposition 1. }

i

Remark. Note that, in the first part of the proof of Theorem 2. if P
ST ;. then it is not in general true that | P'| — | Pi . Therefore. we
cannot conclude that the infimum is attained. In the quadratic case. however,
the infimum Is attained (see Section 3).

THEOREM 3. inf i PP = inf MaXpep (o1] & pi-1 1P 15 o where the sccond
infimum ranges over dall linearly independent nsr functionals ¥, ..... £

"o

Proof. 1t will first be shown that

. i - .
inf " PHP = sup inf ,max e (1)
Ll
where the second infimum is taken over all ¥ ,..., ¥, which are disjoint
functionals of norm 1 in C*[0, I], and such that, if 2 = % L [9a1 - then
LY 1 - e call these functionals nsr (e) functionals. The theorem is
obtained by letting € -~ 0, and observing that subsequential limits of nsr(e)
functionals are nsr functionals, and that on .#,[0, 1] the possible loss o

disjointness in the limit has no effect on max I p i, .
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To show (f), note that any gi projection written as P -- 3. %, <,
(with | %1 ~ 1) has norm

.,
CP max ) l v
oy ! 2o
Lip o

[

Rt

the equalities following from Propositions {.1 and 1.2, respectively. By the
proof of Theorem 2 it follows that || 37 ., .%, " - r; 1, is a limit of norms
of @i projections with nsr (e) functionals. But

i f
R B SN Pl

o0 ,/ AR

3. MiNiMaL NOrRM IN THE QUADRATIC CASE 7 - 2

In this section, attention will be confined to the case n 2 and, in
particular. to the computation of the infimum of the norms of all symmetric
gi projections by use of the two different procedures inherent in Theorems 2
and 3. As the computation will show, this infimum is actually attained by a
gi projection.

To facilitate the computation, and to reduce the number of parameters
involved, the following lemmas are needed.

LimMa 1. Let & € 2,7[0, 1] be represented by £ ayey - awey o -~ agey
Then
(i £ Z; L a; if ayas = 0 oras = 0;
iy &£ - a, < oay oay — 2 min{0, a3+ aa(da; 0 oa.) if
0<a ,0<as.ay -0,

{The remaining cases may be determined from (i) by symmetry.)

Proof. 1Incase (1), | & - sup Zp, over all p, in the unit ball of £,[0, 1].
and is vielded by eitherp, = 1, p, - (I -- 2x),0rp, = < [1 - 8x(x - DI

In case (ii), simple considerations show that Fp, is largest if p, is concave
downward and achieves its norm (1) as a maximum value. Let

Poakx) = 1= plx = 0P 0-p- 2)(1 00 0 L

represent an arbitrary quadratic having these characteristics. Then ¥
Supo.()"(/}pn.l) N Where

179/7”‘,, Cay as oay - pla @ aly - 0P a1 - 0
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Hence, for each 6, Zp, , is linear in p, and the extremum is achieved for
either p = 0 or p = 2/(1 — 6)% Thus one has

PP = ay - ay + ay — 2 minf0, infy[a, 0% + a,(§ — )2 - ay(1 — 6)?]
x (1 — 8)-2.

The result follows upon differentiation of the expression in 8, noting that the
minimum occurs at 6 == a,/(4a; -+ 2a,), and simplifying the resulting expres-
sion ]

A symmetric projection can be written as P = Z:;l £ & v, where
LfC) = Lf (1 — ) and Lf() = Lf(1 — ). Hence, if &, |y, = £, =
Uj1€y ~ @isf1)s — dszey , then one has a,; = ayq_y for j— 1,2, 3, and a,, -
dsy . Thus, for a symmetric gi projection, the triple %, , %, , %, (all of norm 1)
can be represented by a matrix

‘a b s
(d 1 —2.d. a’), (=)
¢ b a

where ' d < i, and | %, — 1 determines ¢ as a function of & and b

(according to Lemma 1). Let v, 0., 562, be dual to the functionals
P, P, P (P, = 8;). From the symmetry of the %, . one has r,(x) —
v5(1 — x) and v,(x) = vo(1 — x)for 0 <X x < 1.

Lemma A will provide the gross estimates which facilitate the proofs of
Lemmas 2, 3, and 4. Recalling that the interpolating projection P, carried on
{0, 1, 1} has norm 5/4, we now prove the following *‘continuity” result.
Simple considerations of symmetry show that one can assume a = | ¢'.

Lemma A. If P is a symmetric gip onto Py with norm <<5/4, then P s
“close to™ Pyin the sense that, in (x), a = 4/5, 1 ¢ 1<C1/5, 1 b << 2/5, ! d =2 1/10.
Also,a - L b el =L

Proof. If a — ¢ << 4/5, then consider p € 7, satisfying p(3) = 0, p(1) =
[/{(a — ¢)and p(0) = [/(¢c — a). Then ¥ p =1, %p =0 %p-=—1; and
hence| P = [pl . = l/(a — ¢) > 5/4. This contradiction gives a¢ — ¢ = 4/5.
A simple calculation using Lemma | then shows that | & ! = 2/5.

We now show that ' ¢ =2 1/10,i.e., 1 - 21d! = 4/5. 1 — 2, d < 4/5,
then consider p € #, satisfying p0) == p(1) = 0 and p(}) = min
(5/2, 1/(1 —— 21d])). But #p=%p~=>bp(}) while Lp= (1)1 —2'd)
(). Thust Pl == pl, = 5/4,since Lp| < 1,i=1,23.

Consider now p € #, satistying p(0) = 1/a, p(1) = p(1) = 0. Then % p = 1,
p = cla, Lyp = dla. Now if a < 1/10, then [ ¢ ' << 1/10 and since | b ' < 2/5.
this contradicts || # = 1. Thus @ = 1/10; and since | d = 1/10, we have
t%p o 1. Recall that * ¢ < g; hence also | Z4p ! < 1. We conclude that
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a .- 4/5, since otherwise | P | = ip,. . 5/4 But also since 1 &1 - 1, we
have that ¢ — i ¢ | =2 1, and hence | ¢ | = L.
Finally the conclusion that ¢ -= 1 | b ¢ t follows from = Zp - |

forall pe #, of norm 1. |
LEMMA 2. Jf inf] Pii};m.« ‘Z? LU, then o e (d0) and
0 = b in ().

Proof. Suppose ‘22:1 PUy oy, ey) s alxy) L ry(x) for some
x, € [0, 1] and a particular choice of the signs: and consider
p = oy fry -i- 3 €7, Since v, -, - ryissymmetrical tor, oy o0y,
and since we will show at the end of the proof that v, - v, -+ ¢, is dominated
by the v; —- v, -~ t; case, there are only two relevant choices for p: namely,
the symmetrical (about &) case p™ — ¢, ¢, - ry corresponding to p
taking values (I, --1,1) at (Z,ﬁ%.fg, and the nonsymmetrical case
p? =y v, vy corresponding to p taking values (1.1, 1) at (Z.
Lo\ D).

Lemma A shows that p' and p*® have the pictorial representations
indicated below in Fig. I. We will use this picture only for illustrative pur-
poses.

Since r4(x) = (1 — x), one has p&(x) - (x) - (1 --x) b ry(x), where

rx) ol X)o= ox — ) and o) - Bla — P~y

¥
® ®
(2)
N\
\\‘ /
\ |
N/
X
o |
ab
@ \\
®

FIGURE 1.
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for some «, B, y. The determination of «, 5, ¥ may be accomplished by using
the relations %, p® = 1, %p® = 1, and L, = 0; the result being
v =2a —¢), B=2ry, vy W - dry((fd=0), y = 1/ + @d-r)d)
(if d <. 0), where r = 2(a 4 b -+ ¢){a — ¢)"'. Thus,

pAx) - oy — 1)yl — 2r(x - 1),
where y is the only quantity depending on the parameter d.
Lemma A yields the gross estimates 'b| <a ¢, 'r — 2, <1, and
d | < 1/10. The maximum of p®, point {3 in Fig. I, is then minimized by
taking d == 0, i.e., &, = ¢, . Also, point {2} has depth

&)
2

pEAY = (¥/2) - ((r/2) 1),

where x <2 0 and 2 < r. Hence, this depth is minimized by taking v as small
as possible, i.e., d —= 0,

We show now that we can assume & = 0. Note that p&(}) — —aj4
y(1 1/8) Sincey == 1,if b < 0, then r << 2 and a snmple calculation shows
that ¢ — ¢ = 1 + b(2¢ + b)/(4¢ + b) yielding a - ¢ < I, and so —a =- 2.
We conclude that p@(}) = 5/4

In the case of p’, one has p(0) -- p'V(1); so that

Fpt» I yields (a = ¢) pD(1) - bp(}) = 1. (<))
L 1 yields ~2d/7‘”(1) (I —21d )p‘”( ) -1 (ifd < 0),

L[ p™(xy) f/)‘“ X)) = 1 (ifd = 0), (+5)

{(see Theorem 2.1b). Suppose ¢ = 0; the second condition then shows that,
in order to minimize the depth of point (), one should take x, — 1 (i.e.,
d = 0). The first condition shows that, as p*(}) is raised (letting x,, — ), the
height of point (1) is not increased. Next, suppose ¢ << 0. Letting p = (a + ¢)
(1 - 2'd})— 2db, we have p(1) = (1 + b —21d])pt and pU() =
—(a + ¢ + 2d) p~t. A simple calculation shows that p®(1) is minimal if
/== 0. A further simple calculation (involving several cases) shows that
Fp()| < p (1) for all d.

We now show that v, = v, + ¢3 is dominated by ¢, — ¢, -+ ¢5. In this
case we obtain relations identical to (#;) and (x,) except that in (%,) -+17s
replace —1’s on the right-hand sides of the equalities. Using %, = ¢,,,, we
have that p®(1) = (I — b)/(a -+ ¢) and p™(}) = 1. But p®(l) =
(I —b)la )<< (I -+ b)la~c)=p2(l). |

Note.  An analysis of the whole situation in the gip quadratic case reveals
that the essential factor for determining the minimal projection is a

Chebyshev-type balancing between points {3 (interior maximum) and /1
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(endpoint maximum) in Fig. I; and. in fact, points (2. and 4 in the same
figure are not critical.

DeriNiTION.  If P can be written P — 3 , % ¢o v, . where all % are
positive functionals and disjoint, then P will be called a positively represen-
table gi projection.

LemMa 3. The interpolating projection at 0, 4, | is the minimal projection
among all positively representable symmetric gi projections onto the quadratics.

Proof. The proof of Lemma 2 shows that the statement of Lemma 2
also holds if the infimum is taken over merely the positively representable
symmetric gi projections. Thus, one need consider only the situation.

-(fl = /\(’0 Ll )\) [ £, Cyroo e .(//3 /\(’] : (l /\) [P

where 0 <. A < | and = +£ 0, 1.

Consider then the case where p takes the values I, |, —1 at £, %, Y.
As in Lemma 2, the conditions ¥, p = 1, %p -~ 1, Fp - -1 may be used
to determine explicitly p in terms of A and z. The interior maximum may
then be computed to be

F (A/4) -1 (1 — ANz

{

4 ))

- N L i .2 2
max - | Hr/s®). where A NE D ),

Differentiating 1 - 4r/s? with respect to = yields
dmax/dz = -~} (M1 -~ A) z/s%).

which is positive since s = —[A(}) + (1 = A)(} ~- )] < 0. Hence, even the
interior extremum decreases to 5/4 as z---0. |

LeMMA 4. The interpolating projection at 0, L, | is the minimal projection
among all symmetric gi projections where ¥, is signed and %, has the form
Aey = peyy (1 - A —wye . with 02 pu 1 - A~ pand 20 +p+ |
(independence of %, . %, . Zy).

Proof. The proof of Lemma 2 shows that the statement of Lemma 2
also holds if the infimum is taken over all symmetric gi projections having
%, as described. Thus, one need consider only the situation

Gy Aey Spepn (LA p)ey.
L= e,

Ly (LA ey pey o Aep.



MINIMAL PROJECTIONS 311

As in Lemma 3, it will suffice to consider the case where p takes the values
1.1. - lat %, %, % . Using these conditions, p may be computed as

px)y =1 - x — ) — B(x — 1)
2 a0 )
1

T BT

[ A

If = 4, pislinear with| p ', achieved at either O or 1. But, in this case,
POy =1 (y2) p(1) = 1 (v2):
which gives

Pl = 4 (aif2y = 1= (/1 — 20 —p i) 22 2,

If o - L, the extreme values of p are given by
B A L U NN G S
1 2 4 1 — Tl =24 at x=0, L
A b — u ) o] ¥
I Zg B ; 21(1 — 2{1,)(] — 2/\ - ‘u,)‘: at Xint 5_ . 5g

(if xint € [0, 1]).
A close analysis of these extrema shoms that | pl', = 5/4. |

Numerical procedure 1. Theorems 2.1 and 2.2 provide that the infimum
of the norms of all symmetric gi projections onto the quadratics may be
obtained as follows. Invert the matrix

a b oe 4/5 << a < 1
(O | 0), 0«b = Il —3a = (1 -+ 10a — Ta®)'2]  (++)
e boa ¢ = a-+b—2ab(4a < byt — 1

to obtain

/a —bhla - ¢) -
(v;;) = (1@ — ¢?)) ( 0 at — ¢* 0

- =ba—c¢) a’

(Lemmas 1, 2, 3, 4 guarantee that the restrictions in (*+) are admissible.) The
columns of this last matrix provide the values of ¢;at 0, 1, 1, i.e.,

e(i — D/2) =y i=1,2.3and;j = 1.2,3.
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N(a. b) Yo max o, hore Gty .

- choices
then
inf . PEm - inf N(a. b).
This last infimum was determined by means of a two-parameter (¢ and b)

search technique on a Hewlett-Packard 9830A programmable calculator.
For the results, see Theorem 1 below.

Numerical procedure 1. Theorems 2.1 and 2.3 provide that the infimum
of the norms of all symmetric gi projections onto the quadratics may be
obtained as follows. For 0 «= A = I and 0 =~ = = 1. consider the functionals

o= Aer (- A ey L0y, /AT VO O A e, .
(Lemmas I, 2, 3, 4 guarantee that the indicated restrictions on ¥, . /.. ¥,
are admissible.) If

N(A, D) max i p max  p. Yip o
»ip o1 - choices
then
inf: PEm o inf VAL 2).
ALz

Again, a two-parameter search technique was used to obtain the results in
the following theorem.

Tueorem 1. [n the quadratic case.
inf i P&, 1.24839.

The infimum 1s uniquely (see the following note) achieved for
P 3 ¥ &, where

P = 0.94876 ¢y yine - 0.05124 ¢,
f; = Oy s

Sy = 0.94876 ¢y gsaars - 0.05124 ¢, .

Note. Uniqueness is obtained in the following sense. For each fixed -. a
convex function of A is being minimized. The resulting function of the single
variable z shows, to the accuracy of the computation, a unique minimum.

Remark. While the above numerical procedures were of equal difficulty,
the situation would appear to be different for n - 2. Procedure | required the
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calculation of the norm (on #,) of each functional ;. Even in the cubic case
this calculation appears difficult, and would seem to indicate that Procedure 11
is preferable.

Remark.  The restriction of considering only symmetric gi projections has
some basis in numerical experiments. Numerous random searches were
conducted without using the assumption of symmetry; the result being, in
each case. an indication that symmetry yielded lower norms. At this time, the
authors have been unable to establish, in a rigorous way, that symmetry
must hold amongst a subset of the minimal gi projections (as is the case for
the set of minimal projections: see [1]).
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